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Layer-by-layer growth in noise-reduced growth models

L. Brendel,1,2 H. Kallabis,1,2 and D. E. Wolf2
1Höchstleistungsrechenzentrum, Forschungszentrum Ju¨lich, 52425 Ju¨lich, Germany

2FB 10, Theoretische Physik, Gerhard-Mercator-Universita¨t Duisburg, 47048 Duisburg, Germany
~Received 21 November 1997!

For several discrete growth models, the damping time of layer-by-layer growth, manifesting itself in oscil-
lations of the surface width, will be related to parameters appearing in the corresponding continuum equations.
The control parameter in all cases is the so callednoise-reduction parameter m. The damping time depends on
m with power laws determined by the continuum equations. The Eden model~versions A and B!, and models
related to molecular beam epitaxy are considered.@S1063-651X~98!08706-6#

PACS number~s!: 81.15.2z, 05.50.1q, 68.55.2a
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I. INTRODUCTION

For crystal growth on high symmetry surfaces, one c
observe a technologically important growth mode, layer-
layer growth. For a suitable choice of growth rate and te
perature, quantities like the reflected high-energy elect
diffraction intensity, which are sensitive to the surface m
phology, show oscillations with a period of 1-ML depositio
time. These oscillations are usually damped, and one of
important unsolved questions of layer-by-layer growth co
cerns the origin of this damping.

One possible reason commonly held responsible for
damping of the oscillations is kinetic roughening; howev
other mechanisms also have to be considered, like inho
geneous deposition or mound formation due to Ehrli
Schwoebel barriers@1,2#. In this paper, we consider dampin
due to kinetic roughening.

Two physical situations will be studied: In molecul
beam epitaxy~MBE!, layer-by-layer growth requires tha
nucleation on terraces which are smaller than a certain lin
dimensionl is essentially forbidden. Thenl can be identi-
fied with the diffusion length of adatoms. Atoms are dep
ited with a rateF, and desorption may be neglected. The
fore, on large scales these growth processes are describ
continuum equations of the type@3#

] th52¹W •W1F a'ad1h, ~1!

with the shot noiseh, the surface currentW, which is a func-
tional of the thicknessh of the growing film, and the lattice
constantsa' anda in the growth direction and thed lateral
directions, respectively. In this paper we study layer-by-la
growth in three models of this kind: The Edwards-Wilkins
~EW! model@4,5#, the Wolf-Villain ~WV! model@6# and the
‘‘1 1’’ model of Das Sarma and Tamborenea@7#.

The second class of models considered in this paper
be motivated by facet growth from a melt. Under appropri
conditions, the nucleation of a new layer happens with
small probability, because atoms are not sufficiently stron
bound to the terraces. However, once an island has nu
ated, its lateral growth is essentially deterministic, beca
the edges are good adsorption sites for atoms from the m
This situation has been modeled by the polynucleat
growth ~PNG! model @8–10#. One can obtain layer-by-laye
PRE 581063-651X/98/58~1!/664~8!/$15.00
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growth oscillations in this case, too, if nucleation events
forbidden within a sufficiently large distancel from existing
steps@11#. l could be interpreted as the diffusion leng
before an adsorbed atom goes back into the melt. The kin
roughening in this physical situation is described on la
scales by the Kardar-Parisi-Zhang~KPZ! equation @12#,
which cannot be written in the form of Eq.~1!:

] th5n¹W 2h1l~¹W h!21F a'ad1h. ~2!

The l term describes a tilt dependence of the growth vel
ity, while the n term represents the so called surface st
ness. Instead of PNG, in this paper we investigate layer-
layer growth in two other models of this kind, namely, tw
versions of the Eden model@13#.

A. Coarse graining and noise reduction

The existence of a characteristic distancel , below which
terraces remain flat, means that the shot noise is effecti
averaged out over an areal d. The small scale diffusive dy-
namics responsible for this averaging is not interesting in
context of kinetic roughening. Without specifying it any fu
ther, one may try to model the growth kinetics directly o
scales larger thanl . This coarse grained modeling of growt
processes@14# is a special refinement of the more gene
technique called noise reduction@15,16#.

In noise reduced growth models, the lattice consists
cells which can contain up tom particles and correspond i
the picture of coarse graining to a volumel da' . The fast
kinetics ~of whatever origin for each model!, which guaran-
tees that in a partially filled cell all particles are arrang
within a single atomic layer, is not specified, and thus n
implemented explicitly. The growth rules of the model on
determine the transfer of a mobile particle from one cell
an adjacent one. In the simplest cases considered in this
per, these rules only depend on whether a cell is full or c
still receive particles, but not on the degree to which a p
tially filled cell is occupied.

The technical realization is done by installing a counter
each cell to register the arrival of a particle. Only whenm of
them are collected is that cell is treated as occupied, wh
has consequences on its neighborhood depending on
model’s rules. As shown below, the strength of the s
664 © 1998 The American Physical Society
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PRE 58 665LAYER-BY-LAYER GROWTH IN NOISE-REDUCED . . .
noise will decrease asm21 using this technique. This ex
plains why it is called noise reduction.

B. Oscillations of the surface width

In the ideal case of perfect layer-by-layer growth, a n
layer only starts if the preceding one is completely filled, i.
there are never more than two exposed layers. Therefore
squared surface widthw25h̄22h̄2 ~the bar denotes spatia
average! oscillates asw2(u)5u(12u) ~cf. Fig. 1!, whereu
is the coverage of the top layer@17#.

In reality, the layers do not grow one after another, b
small islands can emerge on large islands, before their
lescence is completed. After some time there are many
posed layers and one cannot distinguish between integer
half-integer times: The oscillations are damped out, as sh
in Fig. 1. The purpose of this paper is to present a theory
the dependence of the damping timet̃ on the noise reduction
parameterm.

II. COMPUTER SIMULATION RESULTS

A. Eden models

The Eden model, introduced in 1958@18# to describe
growth of cell colonies, exists in three different variants@13#.
Though in all three cases the growth of a cluster takes p
by occupying a perimeter site~empty site next to an occu
pied one! chosen at random, the particular choice differs:

Version A. All free perimeter sites have the same pro
ability to be chosen. The chosen site is then occupied.

Version B. All ‘‘bonds’’ connecting a free perimeter site
to the cluster have the same probability to be chosen.
site belonging to the chosen bond is occupied.

Version C. All cluster sites which have neighboring fre
perimeter sites have equal probability to be chosen. Am
the free neighbors of the chosen cluster site, the one to
occupied is again chosen with equal probability. This vers
will not be discussed in this paper.

In 1987, Kerte´sz and Wolf@17# applied the noise reduc
tion technique to versions A and C, and found that it i

FIG. 1. Oscillations of the surface widthw2 for the Eden model
~version A! with a noise reduction parameterm532. Filled symbols
emphasize integer times~in monolayers!, open symbols half-intege
times. The dashed line shows perfect layer-by-layer growth:
oscillations persist. Here and in the following figures,w is mea-
sured in units of the vertical lattice constanta' , andt is measured
in units of the layer completion timet.
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proves the scaling behavior and causes layer-by-la
growth. For the latter they found a linear relationship b

tween the damping timet̃ and the noise reduction paramet
m: t̃}m.

In our simulations of versions A and B, we confirmed
power law dependencet̃}mm. The exponents were extracte
by calculatingm(m)[ log2t̃(m)2log2t̃(m/2). The result for
version A ism(m)51.11eA(m), where the small deviations
e are given in Table I. The corresponding data collapse
shown in Fig. 2. To point out the sensitivity of such a da
collapse, a plot withm51.0 is shown in Fig. 3. Similarly, for
version B we obtainedm(m)51.61eB(m) ~cf. Fig. 4!.

An interesting fact is that version B exhibits a differe
damping exponent (m51.660.02 as shown in Fig. 4! than
versions A and C, though their asymptotic scaling behav
is described by the same roughness exponentz and dynamic
exponentz as version B, namely, those of the KPZ unive
sality class@13,19#. This rules out the universal validity of a
scaling relation between the damping exponent and the s
ing exponents, as for example the relation

m5
z

2z
, ~3!

first found for the noise reducedsingle step model@20#.
In summary, details which do not influence the univers

ity class may influence the scaling of the damping time w
m.

e

TABLE I. The corrections to the exponentm for the Eden mod-
els.

m eA eB

16 – 0.008
32 – 0.013
64 0.006 25 20.008
128 0.005 02 –
256 20.001 04 –

FIG. 2. Data collapse with four different noise reduction para
eters showing the damping time of the Eden model~version A!.
Filled symbols correspond to integer times, open symbols to h
integer times. For the uncertainty60.01, cf. Table I.
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B. Models related to molecular beam epitaxy

One of the basic assumptions for ideal MBE is the lack
desorption of particles back into the vacuum, as well as
absence of holes and overhangs, the ‘‘solid on solid’’~SOS!
restriction. An additional feature is the surface diffusio
which in the case of the models described below reduces
relaxation step just after the deposition.

1. Edwards-Wilkinson model

In a lattice model suggested by Family@5#, particles are
deposited one by one at randomly chosen sites, and mov
the lowest nearest neighbor site. Possible microscopic
sons for this downward motion in the context of molecu
beam epitaxy are funneling, kick-out at terrace edges,
the influence of surfactants~see Sec. IV!. A continuum ver-
sion of this model had previously been investigated by E
wards and Wilkinson@4# in the different context of sedimen
tation in a gravitational field. The lattice version is the be
known representative of the EW universality class~see Fig.
5!.

Figure 6 shows the growth oscillations of the noise
duced EW model. The rescaling of time gives a damp
exponent ofm52.0560.05.

FIG. 3. A linear rescaling shows that the damping exponent
version A is not simplym51.

FIG. 4. Data collapse with four different noise reduction para
eters showing the damping time of the Eden model~version B!.
Filled symbols correspond to integer times, open symbols to h
integer times. For the uncertainty60.02, cf. Table I.
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2. Wolf-Villain model

In this model @6#, particles do not move to the lowes
nearest neighbor site but to the one with the largest num
of bonds~see Fig. 5!. The question of the universality clas
for the WV model has been debated for a long time. R
cently it was shown to exhibit EW behavior after a very lo
crossover time (.106 ML ! @21#. Figure 7 shows its damping
exponent to bem51.560.05.

3. 11 model

This model @7# is very similar to the WV model with
surface dimensiond51. However, sites offering three o
two bonds are not distinguished; see Fig. 5.

Though the diffusion rules differ only slightly from th
WV rules, the 11 model behaves differently, especially re
garding the surface current and step-height distribution~cf.
Refs.@22,23#!, and its connection to any universality class

r

-

f-

FIG. 5. The most important situations, showing the differenc
in the rules for the WV, 11, and EW models, respectively.3
denotes the case where the particle should stay at its locatio
deposition. Whenever there are two or three possible cases, o
them is chosen with probability12 or 1

3, respectively. It should be
noted that in all three models the rules were slightly modified: I
tie situation involving the deposition site, a random choice is ma
among the best, whereas in the original models the deposition
was taken.
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PRE 58 667LAYER-BY-LAYER GROWTH IN NOISE-REDUCED . . .
still unclear. However the damping exponent is the same
for the WV model (m51.560.05), as shown in Fig. 8.

III. ANALYTICAL RESULTS

The simulations show that not only the envelopes of
damped oscillations but also the later time evolution sca
with the same characteristic timet̃ . Hence the power law
dependence of the number of oscillations on the noise re
tion parameterm can be investigated by a dimensional ana
sis of them-dependent parameters of the continuum equa
which governs the surface kinetics in the kinetic roughen
regime, when the oscillations are no longer observable. T
of course requires that a continuum description is known

First we have to consider the strength of the noiseh,
which represents the fluctuations of the deposition r
around its average valueF, and which is mainly shot noise
i.e.,

^h~x,t !h~x8,t8!&5Fdd~x2x8!d~ t2t8!, ~4!

due to the statistical independence of deposition event
individual particles. The other sources of randomness in

FIG. 6. Data collapse with three different noise reduction
rameters showing the damping time of the EW model~random
deposition with surface relaxation!. Filled symbols correspond to
integer times, open symbols to half-integer times.

FIG. 7. Data collapse with three different noise reduction
rameters showing the damping time of the WV model. Filled sy
bols correspond to integer times, open symbols to half-inte
times.
as

e
s

c-
-
n
g
is

e

of
e

models we simulated are related to tie situations in the
croscopic kinetics, and are neglected in the continuum
scriptions.

The noise strengthF is related to the deposition rateF,
even if this is removed from the Eqs.~1! and~2! by a trans-
formation to the comoving frame (h→h2a't/t). Here we
have introduced the layer completion timet with 1/t5Fad.

Without noise reduction, we obtain~see, e.g., Ref.@24#!

F5F ~a'ad!2. ~5!

When noise reduction is applied, this is no longer true,
we obtain anm dependence ofF @17#,

F}1/m. ~6!

The reason for this is that, during the deposition oft layers,
each cell receivesmt6Amt particles which corresponds t
height fluctuations ofa'Amt/m. According to Eq.~4!, this
should beAFt/ad, which proves Eq.~6!.

From now on we only discuss special cases of the K
equation, i.e., we have to deal with the paramet
n(m),l(m), andF(m). We neglect further terms which ar
responsible for crossovers, in particular for the models
lated to molecular beam epitaxy, wherel50. Some of these
have been discussed elsewhere@1#.

It is clear that for random deposition, i.e., in the absen
of correlations between neighboring cells, layer-by-lay
growth is still possible, because of the strong correlatio
within a cell: All m particles inside a cell are accommodat
within the same layer, before the next layer can start@25#.
The oscillations end when the typical height fluctuatio
equals about one lattice constant, i.e.,F t̃ /ad'a' . Thus, for
random deposition, one obtains@26#

t̃}m. ~7!

A. Dimensional arguments

Let us reformulate this argument in a slightly differe
way, which will turn out to be useful in more general situ
tions: Let t̃ be the time when the typical height fluctuationsh̃

-

-
-
r

FIG. 8. Data collapse with three different noise reduction p
rameters showing the damping time of the 11 model of Das Sarma
and Tamborena. Filled symbols correspond to integer times, o
symbols to half-integer times.
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have reached the size of the vertical lattice constanta' . At
this time t̃ the layer coherence will be maintained up to
characteristic lengthl̃ , which in the case of random depos
tion is the lateral lattice constanta, but can be bigger if
communication between cells is allowed. As the dimens
of the noise@h# is ~height!/~time!, and that of thed functions
~length! 2d and ~time! 21, respectively, it follows from Eq.
~4! that

F;
l̃ d

t̃
a'

2 , ~8!

where the sign; means ‘‘equal up to a dimensionless co
stant independent ofm.’’ Using Eq. ~6!, and solving fort̃ ,
one obtains Eq.~7!.

Now let us look at the EW model. Here correlations c
spread among neighboring cells. The only new param
entering the continuum description isn. A similar dimen-
sional argument as just given forF shows that

n;
l̃ 2

t̃
. ~9!

Solving Eqs.~8! and ~9! for t̃ and l̃ for d51 gives

t̃;
n

F2
a'

4 , l̃ ;
n

F a'
2 . ~10!

In Sec. III C we shall show that in the EW modeln is m
independent for not too smallm . Together with Eqs.~6! and
~10!, this implies

t̃}m2, l̃ }m, ~11!

in very good agreement with our simulation results fort̃ .
Now let us turn to the Eden model: For the ‘‘full’’ KPZ

equation~i.e., lÞ0) we have to take the renormalization
the coefficientsn andF into account;l is not renormalized
@12#. Fortunately, ind51 @27#, the combinationF/n is also
not renormalized, which enables us to do the dimensio
analysis in the same way as above. This leads to

F
n

;
a'

2

l̃
, l;

l̃ 2

a' t̃
~12!

or

t̃;
n2

F2l
a'

3 , l̃ ;
n

Fa'
2 . ~13!

While Eq. ~6! still holds true, we do not know them
dependence ofn and l in the Eden model. Assuming th
power laws

n}men, l}mel, ~14!

we arrive at

t̃}m2en2el12, l̃ }men11. ~15!
n

er

al

Now the parameterl can be measured explicitly, sinc
the KPZ equation is invariant under the tilt transformation

h~x,t !→h~x22lst,t !2sx1ls2t, ~16!

which shows, that a surface with an imposed tilt~slopes)
has an additional velocityls2 compared to the flat one, an
thusl can be extracted from this extra velocity.

Then a variation ofm allows for the determination of the
exponentel . Figure 9 shows thatl varies as a function ofm
according to a power law. Usingen5m/21el/221 @cf. Eq.
~15!#, and the numerical results form, en can also be pre-
dicted. The results are shown in Table II. In Sec. III B, w
will have another estimate foren .

For version A, the signs of the exponentsel anden can be
understood in the following way: Consider a regular surfa
with a global tilts, i.e., due to the discreteness a step train
terrace sizel 5a' /usu. If all steps are at least two lattic
constants apart~i.e., l >2a), there are three types of growt
sites: The lower site next to a step is called a kink site, a
the upper one the edge site; all the others are terrace s
Now we apply the growth according to the Eden rules in
noise free limit ~i.e., m→`). In the absence of noise, n
steps higher than two lattice constants, no overhangs, an
holes can emerge. Thus in version A each site has the s
local growth velocity. Therefore,] th(x,t) does not depend
on the slopes. In fact it is totally independent of the surfac
configuration, and Eq.~2! reduces to the trivial equation

] th5
a'

t
, ~17!

FIG. 9. The measuredl in the case of the Eden model as
function of m in a log-log plot. The slopes of the regression lin
~solid! are 20.7260.01 ~version A! and 0.4260.01 ~version B!.
The dashed line corresponds to an exponent of21.1 ~cf. Sec.
III B !.

TABLE II. The exponentsel anden for the Eden models.

Version el en

A 20.7260.01 20.8160.01
B 0.4260.01 0.0160.015
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i.e., n5l5F50, in accordance with negative exponentsen

andel .
In version B, according to the rules, the kink sites ha

twice the local growth velocity as edge and terrace sites,
hence they provide an excess velocity which is proportio
to their densityusu/a' , so that Eq.~2! becomes

] th5
a'

t
1

a

t
u¹W hu. ~18!

For large but finitem, the cusp ina/tu¹W hu will be
rounded, and can be approximated by a parabolic
l(¹W h)21a2/(4t2l) for u¹W hu<a/(2tl). Thus the cusp for
m→` can be seen as the limitl→`, and so we haven
5l215F50, in agreement with a positiveel , while for
en.0 the situation is unclear.

B. Scaling

It is instructive to point out again the role of the quantiti
t̃ and l̃ introduced in Sec. III A. There we used dimension
arguments to find out the only way in which the paramet
F, n, andl can enter the proposed time and length.

Now let us take the exact solution of the EW equation
one dimension@27#,

w2~ t,L !5
F
n

L f S nt

L2D , ~19!

whereL is the linear dimension of the system, and the sc
ing function f (x) behaves likeAx for x!1, and approache
a constant for larger values.

Using relations~8! and~9! with their numerical prefactors
set to 1, and reinserting the EW scaling exponentsz52 and
z51/2 into Eq.~19!, this can be written as

w2~ t,L !

a'
2

5~L/ l̃ !2z
• f S t/ t̃

~L/ l̃ !zD . ~20!

This is not a new result, of course, but a more detai
version of the well known and widely used general scal
expression, first given in Ref.@28#: detailed, because it take
into account the dimensions of height, length, and time
a' , l̃ , and t̃ , respectively. Apart from dimensional consi
tency this reminds one of the fact that the validity of pow
laws describing the scaling behavior is always limited fro
below by a cutoff value, which then serves as the natu
unit. This does not play a role as long as it is fixed~e.g., the
lattice constant!, but in this situation the units turn out to b
just l̃ and t̃ , and thus depend on the parameters (F, n), and
therefore onm.

Moreover, it was not by chance thatl̃ appeared in Eq.
~20! instead of, e.g., the lattice constanta. If a power law
would already apply on scales comparable toa, there should
be a change in behavior when eventually the scale ofl̃ is
reached~which is larger thana). This statement is a genera
one; the natural unit appearing in a power law~i.e., its lower
cutoff! is the largest of all characteristic scales with the c
rect dimension.
e
d
l

rt

l
s

l-

d
g

a

r

al
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Hence, with the general scaling functionf (x) ~which var-
ies likex2z/z for smallx), Eq.~20! is not restricted to the EW
equation, and it can be used to predict the saturation beha
of w2:

The saturation time is reached when the argument of
scaling function is of order 1, i.e.,

tsat;Lzl̃ 2zt̃ , ~21!

and inserting the power laws

t̃}mm, l̃ }mk ~22!

yields

tsat}mm2zkLz. ~23!

For times longer thantsat, the width saturates as

w`
2 } l̃ 22zL2z}m22kzL2z. ~24!

Two special cases arise from Eqs.~23! and ~24!:
~1! k50⇒ The saturation time varies like the dampin

time ~i.e., tsat}mm), while the saturation width is indepen
dent ofm.

~2! k5m/z⇒ The saturation time does not depend onm,
while the saturation widthw`

2 varies likem22mz/z, asw2(t)

does for all timest. t̃ .
In Ref. @17#, it was found that for version A of the Ede

model the scaled saturation widthw`
2 /L approached a con

stant value of about 0.052 in a 1/m fashion. Thus, for a large
m, version A could be a candidate for case one~i.e., k50).
With this, we obtainen521 from Eq.~15!, and that in turn
predicts el52m521.1, which deviates rather strongl
from the values of Table II. But it should be pointed out th
the value el520.72 therein was obtained by evaluatin
l(m) for rather small values ofm. In the last two points
(m516 and 32!, there is an indication of a crossover to
lower exponent. The expected value of21.1 is shown as a
dashed line in Fig. 9. This crossover will be discussed la
~Sec. IV A!.

A better agreement is obtained in the case of version
For this model, it was found in Ref.@29# ~and also in our
own simulations! that the saturation time is not influenced b
the noise reduction, and thus we are in class 2~i.e., k
5m/z). Using the exact valuez5 3

2 and our resultm51.6
~cf. Table I!, the result of Eq.~15! is en50.067, which is
well in the range of that in Table II.

Another model in class 2 is the EW model. This mea
with z52 andm.2 thatk51 should hold true, which fits
well to the resulten50 of Sec. IV C.

C. Surface current in the EW model

For the EW equation, them dependence of the occurrin
surface currentW arises from the influence ofm on n since

W52n¹W h. ~25!

This identity results when bringing Eq.~2! into the form of
Eq. ~1!, which is only possible forl50.
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670 PRE 58L. BRENDEL, H. KALLABIS, AND D. E. WOLF
Actually them dependence ofn is weak and vanishes fo
largerm, as shown in Fig. 10. The limiting value ofn52.5
~with units a5a'5t51) for m→` ~i.e., no noise! can be
explained as follows.

If we consider again a regular surface with a posit
global tilt s, the contribution to the average current is22
~along the arc length! for the edge sites,2 1

2 for the kink sites
~cf. Fig. 11 and Fig. 5, lines 5 and 7, respectively!, and zero
for the terrace sites. Since we haves steps per unit length
this results in a current ofj `525/2s, which, when com-
pared to Eq.~25!, reveals the limiting value forn. For lower
noise reduction we obtain deviations from the perfect st
during growth. Their effect is a reduction of the current@cf.
Fig. 11~c!#.

IV. DISCUSSION

A. Description by continuum equations

For versions A and B of the Eden model, and for the E
model, we were able to relate them dependence of the
damping time to them dependence of the coefficients of th
corresponding continuum equations. This was done by id
tifying the damping timet̃ and the associated layer cohe
ence lengthl̃ with the characteristic time and length scal
appearing in the scaling law which follows from the co

FIG. 10. The dependence of the surface current on the n
reduction parameterm for three different global tilts in the EW
model. Normalizing the negative current with the tilt leads direc
to the coefficientn; cf. Eq. ~25!. This coefficient is independent o
m for larger values ofm. The limiting valuen52.5 ~with units
a'5a5t51) is explained in the text.
s

n-

tinuum equations. This identification was indirectly co
firmed by measuring the correspondingm dependencies ex
plicitly.

Whereas the damping time exponent could be explai
in this way for the EW model and version B of the Ede
model, version A of the Eden model turned out to be mo
subtle, because the coefficientl of the corresponding KPZ
equation has no simple power law dependence onm ~cf. Fig.
9!. In this context an important property of the Eden mod
should be brought back into mind: the intrinsic wid
@19,17#. This additional contribution to the surface width h
a different behavior than the long wavelength fluctuatio
described by Eq.~2!, and thus leads to strong corrections
scaling laws like Eq.~20!. Since the intrinsic width influ-
ences the growth velocityv via the perimeter density@30#,
direct measurements ofv(¹h) exhibit just an effectivel.
Only a sufficient suppression of the intrinsic width by mea
of the noise reduction@17#, the ‘‘real’’ behavior@i.e., accord-
ing to Eq.~2!# is revealed. The same effect~yet weaker! can
be seen for version B in Fig. 9: The first three data poi
indicate a crossover from a negative exponent to the cor
one. Apparently the effect of the intrinsic width on the me
suredl is more pronounced in the case of version A, f
which a stronger correction to scaling is already kno
@13,17#. Unfortunately the desired range of largerm is diffi-
cult to access, since there the tilt dependence of the velo
becomes smaller than the error bars.

B. Microscopic considerations

Because of the lack of a suitable continuum descript
for the WV and 11 models ~cf. also Refs.@31,21#!, their
valuem51.5 will not be analyzed further here. Still, a com
parison of these models with the EW model gives insig
into microscopic mechanisms which have a bearing on
molecular beam epitaxy.

This is because it seems—regarding the microsco
rules—at first sight unclear why the EW and WV mode
should behave differently for early times. Since for an ato
located at an edge site, the kink site has a lower height an
the same time a higher coordination, the atom will hop do
in both cases~cf. Fig. 5, lines 5 and 6; this argument on
holds true ford51).

The small but crucial difference arises when the atom
deposited directly at the kink site or at the terrace site nex
it: After relaxation it will be found at the kink site with a
probability of p51 for WV rules but only withp5 5

12 for
EW rules~cf. Fig. 5, lines 7 and 8!. This results in a larger

se
rage
d

FIG. 11. Surface currents~along the arc length! for the EW model. The numbers denote the contribution of each site to the ave
current~with unitsa5a'5t51). In ~a!, two separated steps produce a net contribution of25, while, in ~b!, for a double step, it is reduce
to 23.5. ~c! shows that the addition of a single atom may reduce the contribution of a step from22.5 to 22.
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island density for the EW model~i.e., in smaller islands at a
fixed coverage!, which increases the chance for a deposi
atom to relax into the incomplete layer.

That small islands are good for layer-by-layer grow
~here manifested bym52 for EW being larger thanm51.5
for WV! is not only specific to the toy models consider
here, where atoms can only escape islands when they
deposited on an edge site and the effect only becomes vi
by using the noise reduction technique. Indeed, in exp
ments, layer-by-layer growth can be promoted by artificia
increasing the density of islands~e.g., by sputtering; cf. Ref
@32#!.

Moreover the difference between EW rules and WV ru
can be regarded as an example for the Markov mechan
@33#, by which surfactants can improve layer-by-lay
.

d

e

-
.

d

re
le
i-

s
m

growth: If the surfactant atoms preferentially attach to t
kink sites, they may suppress the accretion of adatoms
step from thelower terrace, but still may give way for ad
atoms coming down from theupperterrace. Thus the surfac
tant would make a WV-type growth more EW like. As e
plained above this would increase the island density
hence improve layer-by-layer growth.
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