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Layer-by-layer growth in noise-reduced growth models

L. Brendel’? H. Kallabis!? and D. E. Wolf
'Hochstleistungsrechenzentrum, Forschungszentriinh]2425 Jlich, Germany
2FB 10, Theoretische Physik, Gerhard-Mercator-Univéitsiaiisburg, 47048 Duisburg, Germany
(Received 21 November 1997

For several discrete growth models, the damping time of layer-by-layer growth, manifesting itself in oscil-
lations of the surface width, will be related to parameters appearing in the corresponding continuum equations.
The control parameter in all cases is the so caflede-reduction parameter niThe damping time depends on
m with power laws determined by the continuum equations. The Eden nfeglsions A and B and models
related to molecular beam epitaxy are considef€4063-651X98)08706-9

PACS numbes): 81.15-~z, 05.50+(q, 68.55-a

I. INTRODUCTION growth oscillations in this case, too, if nucleation events are
forbidden within a sufficiently large distaneefrom existing
For crystal growth on high symmetry surfaces, one carsteps[11]. / could be interpreted as the diffusion length

observe a technologically important growth mode, layer-by-before an adsorbed atom goes back into the melt. The kinetic
layer growth. For a suitable choice of growth rate and tem+oughening in this physical situation is described on large
perature, quantities like the reflected high-energy electroscales by the Kardar-Parisi-Zhan@{PZ) equation[12],
diffraction intensity, which are sensitive to the surface mor-which cannot be written in the form of E¢l):
phology, show oscillations with a period of 1-ML deposition

time. These oscillations are usually damped, and one of the ah=vV?h+\(Vh)?+F a,a’+ 7. 2
important unsolved questions of layer-by-layer growth con-
cerns the origin of this damping. The\ term describes a tilt dependence of the growth veloc-

One possible reason commonly held responsible for thgy while the v term represents the so called surface stiff-
damping of the oscillations is kinetic roughening; however,negs Instead of PNG, in this paper we investigate layer-by-

geneous deposition or mound formation due to Ehrlichersjons of the Eden modgL3).

Schwoebel barrierfl,2]. In this paper, we consider damping
due to kinetic roughening.

Two physical situations will be studied: In molecular
beam epitaxy(MBE), layer-by-layer growth requires that = The existence of a characteristic distanGebelow which
nucleation on terraces which are smaller than a certain linegerraces remain flat, means that the shot noise is effectively
dimension/ is essentially forbidden. Thesi can be identi- averaged out over an ared. The small scale diffusive dy-
fied with the diffusion length of adatoms. Atoms are deposnamics responsible for this averaging is not interesting in the
ited with a rateF, and desorption may be neglected. There-context of kinetic roughening. Without specifying it any fur-
fore, on large scales these growth processes are described tyer, one may try to model the growth kinetics directly on

A. Coarse graining and noise reduction

continuum equations of the ty8] scales larger thari. This coarse grained modeling of growth
L processe$14] is a special refinement of the more general
dh=—-V.J+F a a%+ 7, (1)  technigue called noise reductiph5,16.

In noise reduced growth models, the lattice consists of
with the shot noisey, the surface current, which is a func-  cells which can contain up tm particles and correspond in
tional of the thicknes$ of the growing film, and the lattice the picture of coarse graining to a volura@a, . The fast
constantsa, anda in the growth direction and the lateral  kinetics (of whatever origin for each modelwhich guaran-
directions, respectively. In this paper we study layer-by-layetees that in a partially filled cell all particles are arranged
growth in three models of this kind: The Edwards-Wilkinson within a single atomic layer, is not specified, and thus not
(EW) model[4,5], the Wolf-Villain (WV) model[6] and the implemented explicitly. The growth rules of the model only
“1+" model of Das Sarma and Tamborenfd. determine the transfer of a mobile particle from one cell to

The second class of models considered in this paper caan adjacent one. In the simplest cases considered in this pa-
be motivated by facet growth from a melt. Under appropriateper, these rules only depend on whether a cell is full or can
conditions, the nucleation of a new layer happens with sstill receive particles, but not on the degree to which a par-
small probability, because atoms are not sufficiently stronglytially filled cell is occupied.
bound to the terraces. However, once an island has nucle- The technical realization is done by installing a counter in
ated, its lateral growth is essentially deterministic, becauseach cell to register the arrival of a particle. Only wherof
the edges are good adsorption sites for atoms from the melthem are collected is that cell is treated as occupied, which
This situation has been modeled by the polynucleatiorhas consequences on its neighborhood depending on the
growth (PNG) model[8-10. One can obtain layer-by-layer model's rules. As shown below, the strength of the shot
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TABLE I. The corrections to the exponeptfor the Eden mod-

els.
m €Ep €
. 16 - 0.008
N‘;’ 32 - 0.013
64 0.006 25 —0.008
128 0.005 02 -
256 —0.00104 -

proves the scaling behavior and causes layer-by-layer
growth. For the latter they found a linear relationship be-

FIG. 1. Oscillations of the surface width? for the Eden model  tween the damping time and the noise reduction parameter
(version A with a noise reduction parameter= 32. Filled symbols m: Tem.

e_mpha5|ze Integer tlmeésn monolayers open symbols haIf-mteqer In our simulations of versions A and B, we confirmed a
times. The dashed line shows perfect layer-by-layer growth: The ~
oscillations persist. Here and in the following figures,is mea-  POWer law dependendecm#. The exponents were extracted

sured in units of the vertical lattice constant, andt is measured by calculating u(m)=log,t(m)—log,t(m/2). The result for
in units of the layer completion time. version A isu(m)=1.1+ ex(m), where the small deviations
€ are given in Table I. The corresponding data collapse is
shown in Fig. 2. To point out the sensitivity of such a data
collapse, a plot withe=1.0 is shown in Fig. 3. Similarly, for
o ) version B we obtaineg@(m)=1.6+ eg(m) (cf. Fig. 4).
B. Oscillations of the surface width An interesting fact is that version B exhibits a different
In the ideal case of perfect layer-by-layer growth, a newdamping exponenty=1.6=0.02 as shown in Fig.)4than
layer only starts if the preceding one is completely filled, i.e.,versions A and C, though their asymptotic scaling behavior
there are never more than two exposed layers. Therefore, th@ described by the same roughness expotjeartd dynamic
squared surface widttv2=h?—h? (the bar denotes spatial €XPonentz as version_ B, namely, those. of the KPZ univer-
averagg oscillates asv2(6) = 0(1— ) (cf. Fig. 1), whered sallt_y class[l_s,l‘:’]. This rules out the universal validity of a
is the coverage of the top laygL7]. _scallng relation between the damping exponent and the scal-
In reality, the layers do not grow one after another, buting €xponents, as for example the relation
small islands can emerge on large islands, before their coa-
lescence is completed. After some time there are many ex- w= =, (3)
posed layers and one cannot distinguish between integer and 27
half-integer times: The oscillations are damped out, as shown
in Fig. 1. The purpose of this paper is to present a theory for

the dependence of the damping titnen the noise reduction first found for the nqise re.ducesingle.step mod¢l0]. .
In summary, details which do not influence the universal-

noise will decrease a1~ ! using this technique. This ex-
plains why it is called noise reduction.

parametem. ity class may influence the scaling of the damping time with
Il. COMPUTER SIMULATION RESULTS m.
A. Eden models 0.5 . ‘ ‘

The Eden model, introduced in 19988] to describe 0@#‘;‘
growth of cell colonies, exists in three different variafis]. 0.4 | MQ‘ ]
Though in all three cases the growth of a cluster takes place g
by occupying a perimeter sit@mpty site next to an occu- 03 | O@Qm@;ﬁ%
pied ong chosen at random, the particular choice differs: N mm@@wm@m@ P

Version A All free perimeter sites have the same prob- % .0' ::::ﬁ
ability to be chosen. The chosen site is then occupied. 0.2 ‘é’ +m=128

Version B All “bonds” connecting a free perimeter site 4 4m=256
to the cluster have the same probability to be chosen. The 0.1 ’.‘
site belonging to the chosen bond is occupied. -

Version C All cluster sites which have neighboring free 0.0 be? . : :
perimeter sites have equal probability to be chosen. Among 0.0 0.1 t/m"?*ﬁ" 0.3 0.4

the free neighbors of the chosen cluster site, the one to be
occupied is again chosen with equal probability. This version FIG. 2. Data collapse with four different noise reduction param-
will not be discussed in this paper. eters showing the damping time of the Eden mo@elrsion A.

In 1987, Kertsz and Wolf[17] applied the noise reduc- Filled symbols correspond to integer times, open symbols to half-
tion technique to versions A and C, and found that it im-integer times. For the uncertainty0.01, cf. Table I.
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FIG. 3. A linear rescaling shows that the damping exponent for
version A is not simplyu=1.

B. Models related to molecular beam epitaxy

One of the basic assumptions for ideal MBE is the lack of
desorption of particles back into the vacuum, as well as the
absence of holes and overhangs, the “solid on solE#09
restriction. An additional feature is the surface diffusion,
which in the case of the models described below reduces to a
relaxation step just after the deposition.

1. Edwards-Wilkinson model

In a lattice model suggested by Famifly], particles are
deposited one by one at randomly chosen sites, and move to
the lowest nearest neighbor site. Possible microscopic rea-
sons for this downward motion in the context of molecular
beam epitaxy are funneling, kick-out at terrace edges, and
the influence of surfactantsee Sec. IY. A continuum ver-
sion of this model had previously been investigated by Ed-
wards and Wilkinsoi4] in the different context of sedimen- in
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FIG. 5. The most important situations, showing the differences
the rules for the WV, %, and EW models, respectivelyK

tation in a gravitational field. The lattice version is the bestdenotes the case where the particle should stay at its location of

known representative of the EW universality cldsee Fig.

deposition. Whenever there are two or three possible cases, one of

5). them is chosen with probabilitg or 3, respectively. It should be
Figure 6 shows the growth oscillations of the noise re-noted that in all three models the rules were slightly modified: In a
duced EW model. The rescaling of time gives a dampingﬁe situation involving the deposition site, a random choice is made

exponent ofu=2.05+0.05.

among the best, whereas in the original models the deposition site
was taken.

2. Wolf-Villain model
In this model[6], particles do not move to the lowest
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FIG. 4. Data collapse with four different noise reduction param-
eters showing the damping time of the Eden mog@elrsion B.

nearest neighbor site but to the one with the largest number
of bonds(see Fig. 5. The question of the universality class
for the WV model has been debated for a long time. Re-
cently it was shown to exhibit EW behavior after a very long
crossover time ¥ 10° ML) [21]. Figure 7 shows its damping
exponent to bex=1.5+0.05.

3. 1+ model

This model[7] is very similar to the WV model with
surface dimensiord=1. However, sites offering three or
two bonds are not distinguished; see Fig. 5.

Though the diffusion rules differ only slightly from the
WV rules, the % model behaves differently, especially re-

Filled symbols correspond to integer times, open symbols to halfgarding the surface current and step-height distributiin
integer times. For the uncertainty0.02, cf. Table I.

Refs.[22,23)), and its connection to any universality class is
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FIG. 6. Data collapse with three different noise reduction pa-
rameters showing the damping time of the EW motfeindom
deposition with surface relaxatipnFilled symbols correspond to
integer times, open symbols to half-integer times.

FIG. 8. Data collapse with three different noise reduction pa-
rameters showing the damping time of theé inodel of Das Sarma
and Tamborena. Filled symbols correspond to integer times, open
symbols to half-integer times.
still unclear. However the damping exponent is the same as ) o ) ) )
for the WV model = 1.5+0.05), as shown in Fig. 8. models we 'S|m'ulated are related to tle' situations in the mi-
croscopic kinetics, and are neglected in the continuum de-
scriptions.

The noise strengttF is related to the deposition rate,

The simulations show that not only the envelopes of theeven if this is removed from the Egfl) and(2) by a trans-
damped oscillations but also the later time evolution scale§ormation to the comoving framen(-~h—a, t/7). Here we

with the same characteristic timie Hence the power law have introduced the layer completion timevith Ur=Fa’.

dependence of the number of oscillations on the noise reduc- Without noise reduction, we obtaisee, e.g., Re{24])

tion parametem can be investigated by a dimensional analy- )

sis of them-dependent parameters of the continuum equation

which governs the surface kinetics in the kinetic rougheningyhen noise reduction is applied, this is no longer true, but

regime, when the oscillations are no longer observable. Thige obtain arm dependence of [17],

of course requires that a continuum description is known.
First we have to consider the strength of the noige (6)

which represents the fluctuations of the deposition rate

around its average valle, and which is mainly shot noise, The reason for this is that, during the depositiort ¢dyers,

ie., each cell receivemt=+ \mt particles which corresponds to

height fluctuations of, ymt/m. According to Eq.(4), this

(4 should beyFt/a% which proves Eq(6).

From now on we only discuss special cases of the KPZ
due to the statistical independence of deposition events adquation, i.e., we have to deal with the parameters
individual particles. The other sources of randomness in thg(m),\ (m), and /(m). We neglect further terms which are

responsible for crossovers, in particular for the models re-

IIl. ANALYTICAL RESULTS

F=F (a,a%?>

Foel/m.

(n(xt) p(x' 1)) =F& (x—x")8(t—t"),

0.5 lated to molecular beam epitaxy, where=0. Some of these
@Q@o@" have been discussed elsewhEtg
0.4 S i It is clear that for random deposition, i.e., in the absence
OD%QQQOQQ of correlations between neighboring cells, layer-by-layer
0.3 @Omoﬂ_'% = ] growth is still possible, because of the strong correlations
o Lo mo pomo® L w® within a cell: All m particles inside a cell are accommodated
3 o within the same layer, before the next layer can Stasi.
0.2 | - | The oscillations end when the typical height fluctuations
> equals about one lattice constant, i&t/a%~a, . Thus, for
01 ] random deposition, one obtaif6]
0.0 i ! ! ! ! Toem. (7)
0.0 0.2 04 0.6 0.8 1.0

1.5

tm
A. Dimensional arguments
FIG. 7. Data collapse with three different noise reduction pa- . . . .
rameters showing the damping time of the WV model. Filled sym- Let u$ refqrmulate this argument. in a slightly d'ﬁe,rem
bols correspond to integer times, open symbols to half-integeV@y,» Which will turn out to be useful in more general situa-

times. tions: Lett be the time when the typical height fluctuatidns
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have reached the size of the vertical lattice constant At
this time't the layer coherence will be maintained up to a

characteristic length, which in the case of random deposi-
tion is the lateral lattice constamt, but can be bigger if

communication between cells is allowed. As the dimension

of the noisqg 7] is (heighd/(time), and that of theS functions
(length ~9 and (time) ~*, respectively, it follows from Eq.
(4) that

Td

a?,

F~ )

where the sign~ means “equal up to a dimensionless con-

stant independent ah.” Using Eq. (6), and solving fort,
one obtains Eq(7).

Now let us look at the EW model. Here correlations can

L. BRENDEL, H. KALLABIS, AND D. E. WOLF

PRE 58
10.0
0 E /
D
< o version B
o version A
01| LN
1 10 100
m

FIG. 9. The measured in the case of the Eden model as a

spread among neighboring cells. The only new parametéPnCtion ofm in a log-log plot. The slopes of the regression lines

entering the continuum description is A similar dimen-
sional argument as just given f@ shows that
72

v~=.

t

9

Solving Egs.(8) and (9) for t andT for d=1 gives

14

2
Far

~ 14 4 ~
t~ ? a;, I~ (10

In Sec. Il C we shall show that in the EW modelis m
independent for not too smath . Together with Eqs(6) and
(10), this implies

11

in very good agreement with our simulation results for
Now let us turn to the Eden model: For the “full” KPZ
equation(i.e., A #0) we have to take the renormalization of
the coefficientsy and F into account)\ is not renormalized
[12]. Fortunately, ind=1 [27], the combination/ v is also
not renormalized, which enables us to do the dimension
analysis in the same way as above. This leads to

Foal T2
—~ =, ~—= (12
v at
or
~ V2 ~ 14
t~ Eaf , |~ 7__af . (13)

While Eg. (6) still holds true, we do not know then
dependence of and A in the Eden model. Assuming the
power laws

voem®r,  Aoem®,

(14
we arrive at

TocmZefe)\+2, Tocmeﬁl_ (15)

(solid) are —0.72+0.01 (version A and 0.42-0.01 (version B.
The dashed line corresponds to an exponent-df.1 (cf. Sec.
InB).

Now the parametek can be measured explicitly, since
the KPZ equation is invariant under the tilt transformation

h(x,t)—h(x—2\st,t) — sx+\s?t, (16)

which shows, that a surface with an imposed (llope s)
has an additional velocitys?> compared to the flat one, and
thus\ can be extracted from this extra velocity.

Then a variation om allows for the determination of the
exponent, . Figure 9 shows that varies as a function ah
according to a power law. Using,= u/2+e,/2—1 [cf. Eq.

(15)], and the numerical results fqr, e, can also be pre-
dicted. The results are shown in Table Il. In Sec. lll B, we
will have another estimate fa, .

For version A, the signs of the exponerfsande, can be
understood in the following way: Consider a regular surface
with a global tilts, i.e., due to the discreteness a step train of
terrace size/’=a, /|s|. If all steps are at least two lattice

onstants apafi.e.,/=2a), there are three types of growth

ites: The lower site next to a step is called a kink site, and
the upper one the edge site; all the others are terrace sites.
Now we apply the growth according to the Eden rules in the
noise free limit(i.e., m—). In the absence of noise, no
steps higher than two lattice constants, no overhangs, and no
holes can emerge. Thus in version A each site has the same
local growth velocity. Thereforeg;h(x,t) does not depend
on the slopes. In fact it is totally independent of the surface
configuration, and Eq2) reduces to the trivial equation

a

gh=—, (17)
T

TABLE Il. The exponents®, ande, for the Eden models.

Version e, e,
A —0.72+0.01 —0.81+0.01
B 0.42+0.01 0.01-0.015
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i.e., v=A=F=0, in accordance with negative exponeejs Hence, with the general scaling functib(x) (which var-
ande, . ies likex?¢/Z for smallx), Eq.(20) is not restricted to the EW

In version B, according to the rules, the kink sites haveequation, and it can be used to predict the saturation behavior
twice the local growth velocity as edge and terrace sites, andf w?:
hence they provide an excess velocity which is proportional The saturation time is reached when the argument of the
to their density|s|/a, , so that Eq(2) becomes scaling function is of order 1, i.e.,

a a - | %
ah="2+Z|¥h. (18 taar LA L, 21

and inserting the power laws
For large but finitem, the cusp ina/7|Vh| will be - .
rounded, and can be approximated by a parabolic part toem#,  loem (22
M(Vh)2+a?/(472\) for |[Vh|<a/(27\). Thus the cusp for
m—o can be seen as the limit—o, and so we haver
=)\‘1=]-"=-0, in agreement with a positive, , while for teupt MAT 2L, (23)
e,=0 the situation is unclear.

yields

For times longer thang,, the width saturates as
B. Scaling

2. T2 2 —2x{) 2
It is instructive to point out again the role of the quantities woocl ~26L 2oem2ReL 2 (24)
t andl mtrodueed in Sec. Il A. Ther_e we.used d|men$|onal.|_Wo special cases arise from Eqg3) and (24):
arguments to find out the only way in which the parameters (1) x=0= The saturation time varies like the damping

F, v, and\ can enter the proposed time and length. . . “ ; . . L
Now let us take the exact solution of the EW equation infj'g'r:at ((;f?n tsap-M"), while the saturation width is indepen-
one dimensior}27}, (2) k= ulz= The saturation time does not dependron
[t while the saturation widtlw? varies likem~24¢'Z asw?(t)
wi(t,L)= LI F) : (19 does for all imeg>1.
In Ref.[17], it was found that for version A of the Eden

wherelL is the linear dimension of the system, and the scal—'ﬁnc’deI the scaled saturation widet./L approached a con-

ing functionf(x) behaves Iike\/§ for x<1, and approaches stant V"%'“e of about 0.052 in e_lni/fashlon. Thu_s, for ellarge
m, version A could be a candidate for case dne., k=0).
a constant for larger values. With this, we obtaire,= —1 from Eq.(15), and that in turn
Using relationg8) and(9) with their numerical prefactors ' v g- '

: : ; predicts e, = —u=—1.1, which deviates rather strongly
§e:t ;?Zlih:)ng(;e(lfgertt;]?g égﬁ Ezvvir?t?gﬂgag)(poneméz and from the values of Table Il. But it should be pointed out that

the valuee,=—0.72 therein was obtained by evaluating

20 L i N(m) for rather small values ofm. In the last two points
wt, ):(L/T)Zg_f —|. (200 (m=16 and 32, there is an indication of a crossover to a
f (L/T)? lower exponent. The expected value-efL.1 is shown as a

dashed line in Fig. 9. This crossover will be discussed later
This is not a new result, of course, but a more detailedSec. IV A).
version of the well known and widely used general scaling A better agreement is obtained in the case of version B.
expression, first given in Reff28]: detailed, because it takes For this model, it was found in Ref29] (and also in our
into account the dimensions of height, length, and time viaown simulationgthat the saturation time is not influenced by

a,, T, andt, respectively. Apart from dimensional consis- the noise reduction, and thus we are in classi.2., «
tency this reminds one of the fact that the validity of power=#/2). Using the exact valug=3 and our resultu=1.6
laws describing the scaling behavior is always limited from(cf. Table ), the result of Eq(15) is e,=0.067, which is
below by a cutoff value, which then serves as the naturayvell in the range of that in Table I1.

unit. This does not p|ay arole as |Ong asitis f|)(ecg' the Another model in class 2 is the EW model. This means
lattice constant but in this situation the units turn out to be With z=2 andu=2 thatx=1 should hold true, which fits

justT andt, and thus depend on the parameteFs ¢), and well to the resulte,=0 of Sec. IV C.
therefore orm.

Moreover, it was not by chance thatappeared in Eq.
(20) instead of, e.g., the lattice constamt If a power law For the EW equation, them dependence of the occurring

would already apply on scales comparablefshere should  syrface currenj arises from the influence @h on v since
be a change in behavior when eventually the scalé R R

reachedwhich is larger thara). This statement is a general J=—vVh. (25)
one; the natural unit appearing in a power law., its lower

cutoff) is the largest of all characteristic scales with the cor-This identity results when bringing E¢R) into the form of
rect dimension. Eq. (1), which is only possible foh=0.

C. Surface current in the EW model
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2.6 ‘ ‘ tinuum equations. This identification was indirectly con-
. 4000000000000 gmﬁs by measuring the correspondingdependencies ex-
24 | 6 1 Whereas the damping time exponent could be explained
% in this way for the EW model and version B of the Eden
o slope = 0.05 model, version A of the Eden model turned out to be more
> 22 ¢ o slope = 0.1 | subtle, because the coefficiextof the corresponding KPZ
< slope = 0.2 equation has no simple power law dependencendnf. Fig.
20 | @ | 9). In this context an important property of the Eden models
' should be brought back into mind: the intrinsic width
[19,17). This additional contribution to the surface width has
1.8 ‘ ‘ ‘ a different behavior than the long wavelength fluctuations
0 5 10 15 20 described by Eq(2), and thus leads to strong corrections to
m scaling laws like Eq(20). Since the intrinsic width influ-

ences the growth velocity via the perimeter density30],

FIG. 10. The dependence of the surface current on the noisgirect measurements af(Vh) exhibit just an effective\.
reduction parametem for three different global tilts in the EW  op)y 5 sufficient suppression of the intrinsic width by means
model. Normalizing the negative current with the tilt leads directly of the noise reductiofil7], the “real” behavior{i.e., accord-
to the coefficient; cf. Eq. (25). This coefficient is independent of ing to Eq.(2)] is revealed The same effef tv;le.r;lke} can
m for larger values ofm. The limiting value v=2.5 (with units beg seenq.for version B in. Fig. 9: The firsgt‘ihree data points
a, =a=r7=1) is explained in the text. oo S

- =1 P indicate a crossover from a negative exponent to the correct
one. Apparently the effect of the intrinsic width on the mea-
sured\ is more pronounced in the case of version A, for
which a stronger correction to scaling is already known
[13,17. Unfortunately the desired range of largeris diffi-
cult to access, since there the tilt dependence of the velocity
becomes smaller than the error bars.

Actually them dependence of is weak and vanishes for
largerm, as shown in Fig. 10. The limiting value of=2.5
(with unitsa=a, =7=1) for m— (i.e., no noisg can be
explained as follows.

If we consider again a regular surface with a positive
global tilt s, the contribution to the average current-2
(along the arc lengiifor the edge sites; 3 for the kink sites
(cf. Fig. 11 and Fig. 5, lines 5 and 7, respectiyelnd zero
for the terrace sites. Since we hasesteps per unit length Because of the lack of a suitable continuum description
this results in a current of,,= —5/2s, which, when com- for the WV and B models(cf. also Refs[31,21]), their
pared to Eq(25), reveals the limiting value for. For lower  value w=1.5 will not be analyzed further here. Still, a com-
noise reduction we obtain deviations from the perfect stepparison of these models with the EW model gives insight
during growth. Their effect is a reduction of the currgcit into microscopic mechanisms which have a bearing on real
Fig. 11(c)]. molecular beam epitaxy.

This is because it seems—regarding the microscopic
rules—at first sight unclear why the EW and WV models
should behave differently for early times. Since for an atom
A. Description by continuum equations located at an edge site, the kink site has a lower height and at

. the same time a higher coordination, the atom will hop down
For versions A and B of the Eden model, and for the EWin both casedcf. Fig. 5, lines 5 and 6; this argument only

model, we were able to relate the dependence of the _
d ing time to then d d  th fficients of th holds true ford=1).
amping time to then dependence ot (e Coetlicients ot IN€ — rno gma) put crucial difference arises when the atom is

c.or.respondmg ccl)ntm.uurg equations. Th'§ was done by IOIerHeposited directly at the kink site or at the terrace site next to
tifying the damping timet and the associated layer coher-it: After relaxation it will be found at the kink site with a
ence length with the characteristic time and length scalesprobability of p=1 for WV rules but only withp= 3 for
appearing in the scaling law which follows from the con- EW rules(cf. Fig. 5, lines 7 and B This results in a larger

(a) (b) (c)

L L

B. Microscopic considerations

IV. DISCUSSION

- r 1 - r T - r 1
0 12 2 142 2 0 0 12 3 0 0 12 2 0 +12 0

FIG. 11. Surface current@long the arc lengihfor the EW model. The numbers denote the contribution of each site to the average
current(with unitsa=a, = r=1). In (a), two separated steps produce a net contribution 6f while, in(b), for a double step, it is reduced
to —3.5. (c) shows that the addition of a single atom may reduce the contribution of a step-f&bto —2.
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island density for the EW modéi.e., in smaller islands at a growth: If the surfactant atoms preferentially attach to the
fixed coveragg which increases the chance for a depositeckink sites, they may suppress the accretion of adatoms at a
atom to relax into the incomplete layer. step from thelower terrace, but still may give way for ad-
That small islands are good for layer-by-layer growthatoms coming down from thepperterrace. Thus the surfac-
(here manifested by =2 for EW being larger tham=1.5  tant would make a WV-type growth more EW like. As ex-
for WV) is not only specific to the toy models consideredpjained above this would increase the island density and
here, where atoms can only escape islands when they afRnce improve layer-by-layer growth.
deposited on an edge site and the effect only becomes visible
by using the noise reduction technique. Indeed, in experi-
ments, layer-by-layer growth can be promoted by artificially
increasing the density of islandse.g., by sputtering; cf. Ref. Useful conversations with ‘das Kerisz and Joachim
[32)). Krug are gratefully acknowledged. This work was supported
Moreover the difference between EW rules and WV rulesby the Deutsche Forschungsgemeinschaft through the Gradu-
can be regarded as an example for the Markov mechanisiste College “Structure and Dynamics of Heterogeneous Sys-
[33], by which surfactants can improve layer-by-layertems.”
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